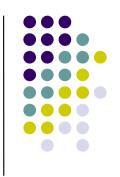
Организация пренатального скрининга в условиях лаборатории и клиники

Игорь Иванович Гузов, Клиники и лаборатории ЦИР Генеральный директор



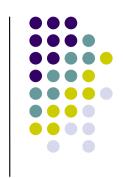
До беременности и вне беременности


- Сведения о скрининге размещены на сайте, в виде брошюр и буклетов доступны в клиниках, посылаются по электронной почте по запросам
- Видеоролики и плакаты по скринингу демонстрируются внутри клиник и рядом с процедурными кабинетами
- Врачи и сотрудники лаборатории отвечают на вопросы по скринингу на интернет-форуме
- Врачи акушеры-гинекологи активно отвечают на вопросы по скринингу на внешних информационных площадках ²

- При первом посещении врача во время беременности, а в случае внешних пациенток при первом обращении во время беременности с помощью специального модуля клинической информационной системы рассчитывается дата зачатия и как можно более точный срок беременности
- Учитываются дата последней менструации, продолжительность и регулярность цикла, данные базальной температуры, данные УЗИ, данные IVF/ET
- Сведения о дате зачатия могут дополнительно

Беременность наступила

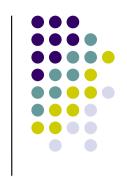
- После 8 недель беременности, когда происходит отсев большинства случаев остановок развития беременности І триместра, производится расчет оптимальных сроков скрининга І триместра.
- Пациентка получает направление на ультразвуковой и биохимический скрининг с точным диапазоном дат.
- Заполняется специальная анкета
- Анкета заполняется с помощью врача или специально обученной акушерки.


- При заполнении анкеты внимание уделяется всему, что может повлиять на результаты скрининга, в частности, принимаемым во время беременности лекарственным препаратам, сопутствующим заболеваниям и пр.
- Данные анкеты вводятся в базу данных

Скрининг I триместра беременности

- Оптимальные сроки: 11-12 акушерских недель
- Все врачи ультразвуковой диагностики прошли специальную подготовку по скринингу I триместра
- Перед взятием крови для биохимического скрининга специально обученная акушерка проверяет правильность заполнения анкеты, помогает заполнить анкету внешним пациенткам, проводит необходимые для скрининга биометрические измерения ⁶

Скрининг I триместра беременности


- Обучение акушерок, помогающих заполнению анкет, проводится под контролем главного врача клиник и руководства лаборатории
- Непосредственная координация работы подразделения медсестер и акушерок «смотровой зоны» осуществляется медсестройнаставником
- Кроме помощи в заполнении анкет скрининга сестринское подразделение «смотровой зоны» осуществляет забор мазков и помощь в заполнении анкет для других сложных анализов (EFORT-тест, гормональные анализы, гемо⁷стаз и

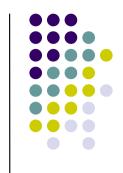
Итоги скрининга I триместра беременности

- План ведения беременности предусматривает взятие в сроки скрининга и других важных плановых анализов.
- Поэтому сроки получения результатов скрининга совпадают со сроками плановой этапной консультации врача акушера-гинеколога
- Все врачи акушеры-гинекологи прошли специальное обучение по анализу в результатов пренатального скрининга

Итоги скрининга I триместра беременности

- На консультации врача акушерагинеколога принимается решение о целесообразности дополнительного УЗИ в 16-18 недель («генетический ультразвуковой скрининг»), консультации клинического генетика или направления пациентки для проведения пренатальной диагностики
- Рассчитываются сроки биохимического скрининга II триместра с точными датами

Скрининг II триместра беременности


- Общий ХГЧ или свободная бетасубъединица ХГЧ
- Альфафетопротеин
- Свободный эстриол
- Ингибин А

Скрининг II триместра беременности


- Сроки проведения скрининга совпадают с плановой консультацией во время беременности
- Врач акушер-гинеколог анализирует результаты скрининга и принимает решение о дополнительных действиях (направление в центр пренатальной диагностики, дополнительная консультация генетика, проведение дополнительных анализов) 11

при беременности и лаборатория

- Мало исследований сопоставимо по своей значимости для судьбы плода с пренатальным скринингом
- Особое внимание уделяется контролю качества, выбору реактивов и приборов, преаналитическому этапу
- Пренатальный скрининг зона особого контроля руководства лаборатории
- Расчет результатов скрининга проводит ограниченный круг специально подготовленных сотрудников
- Все аномальные результаты просматриваются₂ заведующим лабораторией

Скрининг состояния плода во время беременности: не только скрининг, не только аномалий

Типичные профили МоМ - Первый триместр

Аномалия	PAPP-A	Своб. β-ХГЧ
Тр.21 (синдром Дауна)	0,41	1,98
Тр.18 (Синдром Эдвардса)	0,16	0,34
Триплоидия типа I/II (мужского/женского)	0,75/0,06	
Синдром Шерешевского-Тернера	0,49	1,11
Синдром Клайнфельтера	0,88	1,07

РАРР-А при хромосомных аномалиях

Трисомия 21: Median MoM : 0.41 (N=12 публикаций)

Трисомия 18: Median MoM : 0.16 (N=45, 1-й триместр)

• : **0.11** (N=70, 2-й триместр)

Трисомия 13: Median MoM : 0.25 (N=42)

• Триплоидия

Тип I (отцовский) Median MoM : 0.75

Тип II (материнский) Median MoM : 0.06

Шерешевского-Тернера (45,X) МоМ : 0.49

• Другие аномалии половых хромосом :

47 (XXX,XXY,XYY) Median MoM : 0.88

Св. В-хГЧ в первом триместре при хромосомных аномалиях

Трисомия 21: Median MoM : 1.98 (N=579)

Трисомия 18: Median MoM : 0.34 (N=23, 1-й триместр)

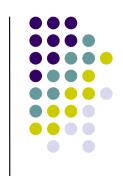
Трисомия 13: Median MoM : 0.51 (N=42)

Триплоидия: Median MoM : 4.59 (N=25)

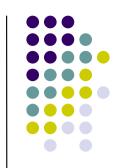
Тип I (отцовский): MoM : 8.04

Тип II (материнский): МоМ : 0.18

Шерешевского-Тернера (45,X) МоМ : 1.11 (N=46) (Нет


значимых различий!)

• Другие аномалии половых хромосом 47 (XXX,XXY,XYY)


Median MoM : 1.07 (Нет значимых

различий)

Двойной тест I триместра и хромосомные аномалии

- Выявляемость: св. бета ХГЧ + РАРР-А + NT – около 90% случаев синдрома Дауна
- Добавление измерения носовой кости повышает выявляемость трисомии 21 до 97%

Двойной тест I триместра и нехромосомные аномалии

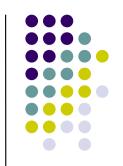
РАРР-А и свободная бета-ХГЧ как маркеры риска осложнений беременности

PAPP-A

- Pregnancy-associated plasma protein A (связанный с беременностью плазменный белок A)
- Протеаза, специфически разрушающая белок 4, связывающий инсулиноподобные факторы роста (IGF1 и IGF2)

IGFBP

- IGFBP = Insulin-like growth factor binding proteins = Белки, связывающие инсулиноподобные факторы роста (IGF)
- Почти 98% IGF-1 связано с одним из 6 IGFBP:
 - IGFBP1
 - IGFBP2
 - IGFBP3
 - IGFBP4
 - IGFBP5
 - IGFBP6


- Разрушение IGFBP приводит к повышению концентрации свободной (не связанной с транспортным белком) фракции IGF, что повышает активность ростовых факторов
- IGF играют важную роль в плацентации
- PAPP-A является белком плаценты, усиливающим действие IGF
- Низкие уровни PAPP-А приводят к снижению активности IGF1 и IGF2, участвующих в плацентации и ремоделировании спиральных артерий
- Снижение активности РАРР-А является маркером нарушений плацентации в первом триместре беременности, что может приводить к декомпенсации плацентарной функции в дальнейшем и быть причиной осложнений беременности

Ростовые факторы и исход беременности

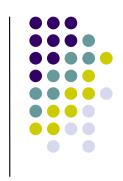
- Управление инсулиноподобными факторами роста является ключевым фактором плацентации
- Нарушение этого процесса может приводить к тяжелым осложнениям беременности
- Определение уровня РАРР-А имеет важное значение для прогнозирования риска осложнений и принятия адекватных мер, начиная с ранних сроков беременности


Снижение уровня РАРР-А (швейцарские данные)

Нормальная беременность	1,009 MoM
Самопроизвольные выкидыши (до 22 недель беременности)	0,740 MoM
Преждевременные роды (22-37 недель)	0,875 MoM
Кардиопатии	0,78 MoM

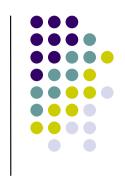
First trimester screening for trisomy 21 Do the parameters used detect more pathologies than just Down syndrome? – G. Kabili et al, European Journal of Obstetrics & Gynecology and Reproductive Biology Volume 114, Issue 1, 10 May 2004, Pages 35-38

Снижение уровня РАРР-А (шотландские данные)



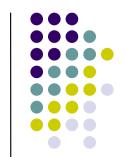
Повышение риска осложнений беременности при РАРР-А меньше 5 перцентили, определенного на сроке 8-14 недель

Задержка внутриутробного роста плода	
Недонашивание беременности с 24 по 32 недели	2,9
Недонашивание беременности с 33 по 36 недель	2,4
Нефропатия	2,3
Мертворождение	3,6

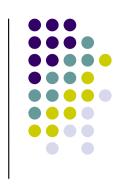

Gordon C. S. Smith et al., 2002 (9002 женщины)

Свободная бетасубъединица ХГЧ

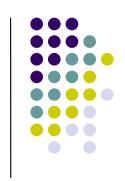
- Не связана с альфа-субъединицей
- Является более информативным маркером в первом триместре беременности, чем общий ХГЧ (меньший разброс значений)


- Физиологическая роль: поддержка работы желтого тела
- Один из сигналов «узнавания» беременности, посылаемых плодным яйцом в организм матери (низкая активность ХГЧ для материнского организма – один из сигналов «слабости» плодного яйца)

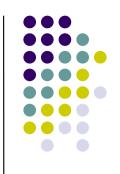
- Может быть повышен либо понижен при различных осложнениях беременности
- В большинстве случаев на риск осложнений беременности указывает повышение уровня общего ХГЧ и свободной бета-субъединицы


Свободная бета-субъединица ХГЧ при нормальной и осложненной беременности (средние МоМ)

Нормальная беременность	1,	099
Самопроизвольный выкидыш	1,	3
Нефропатия	1,	361
Гипертензия	1,	259
Угрожающий выкидыш	1,	489
Задержка внутриутробного развития	1,	183
Кардиопатии	1,	489
Пороки развития	,	151


First trimester screening for trisomy 21 Do the parameters used detect more pathologies than just Down syndrome? – G. Kabili et al, European Journal of Obstetrics & Gynecology and Reproductive Biology Volume 114, Issue 1, 10 May 2004, Pages 35-38

Почему повышается ХГЧ? (гипотезы)

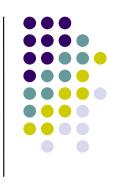


- Некроз трофобласта
- Попытка трофобласта стабилизироваться после кислородного стресса

Четверной тест второго триместра беременности

- Общий ХГЧ и/или свободная бетасубъединица ХГЧ
- Альфафетопротеин
- Свободный (неконъюгированный эстриол)
- Ингибин А

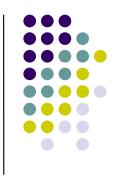
Типичные профили МоМ - Второй триместр


Аномалия	ΑФП	Общ. ХГЧ	Св. Е3	Ингибин А
Тр.21 (синдром Дауна)	0,75	2,32	0,82	1,79
Тр.18 (синдром Эдвардса)	0,65	0,36	0,43	0,88
Триплоидия типа I/II	6,97	13	0,69	
Синдром Шерешевского- Тернера	0,99	1,98	0,68	
Синдром Клайнфельтера	1,19	2,11	0,60	0,64-3,91

Двойной тест II триместра и нехромосомные аномалии

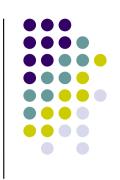
Компоненты четверного теста как маркеры риска осложнений беременности

Альфафетопротеин



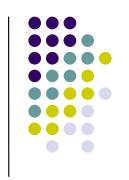
- Фетальный гликопротеин
- Молекулярная масса 69 кДа
- Одна белковая цепь
- Содержание углеводов (степень гликирования): 3-5%
- Вырабатывается желточным пузырьком и печенью плода

Альфафетопротеин


- Группа альбуминоидов:
 - альбумин
 - белок, связывающий витамин D
 - альфа-фетопротеин
 - альфа-альбумин

- Транспортный белок: билирубин, жирные кислоты, ретиноиды, стероиды, тяжелые металлы, красители, флавоноиды, фитоэстрогены, диоксины, лекарства
- Не только транспортный белок: регулировка иммунного ответа, регулировка роста и развития, детоксикация

Отклонения в значениях АФП


I и II триместры

- Маловодие
- •Агенезия почек
- •Дефекты желудочно-кишечного тракта
- •Задержка роста плода
- •Кистозная гигрома
- Фетально-материнское кровотечение
- •Окклюзия сосудов плаценты
- •Многоплодная беременность

III триместр

- ■Тяжелая нефропатия
- •Задержка внутриутробного роста
- •Преждевременные роды
- •Внутриутробная гипоксия плода
- •Антенатальная смерть плода
- •Предлежание плаценты
- •Плотное прикрепление плаценты
- •Отслойка плаценты
- Незрелость

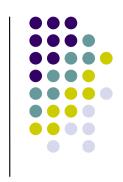
Высокие уровни

Низкие уровни

- Spina bifida
- Аненцефалия
- Duodemal
- Омфалоцеле
- ■Гастрошизис
- •Врожденный нефроз
- •Нейробластома, гепатобластома
- Тирозинемия
- •Герминальноклеточные опухоли

- •Пустое плодное яйцо
- Многоводие
- •Инсулинозависимый диабет
- •Диафрагмальные грыжи
- •Трисомия 21
- •Синдром Тернера/водянка
- **●**3BP∏
- Гидроцефалия
- •Трисомия 18

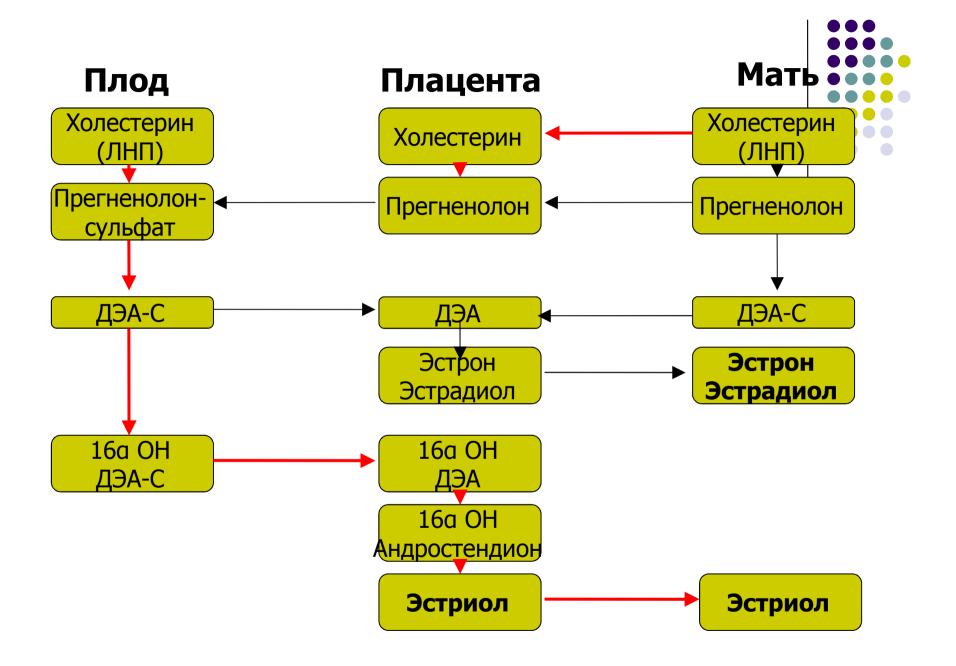
Осложнения беременности


Высокие уровни

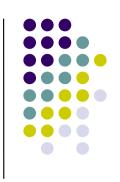
Низкие уровни

- Мертворождение
- •Преждевременные роды
- •Многоплодная беременность
- •Низкая масса тела
- •Гестоз
- Резус-изоиммунизация

- Недонашивание
- •Пузырный занос
- •Смерть плода
- •ВИЧ-инфекция
- •Самопроизвольный выкидыш


- Гормон группы трансформирующего фактора роста бета (TGF-beta)
- Участвует в инвазии спиральных артерий и восстановлении поврежденной плацентарной ткани
- Участвует в ауто- и паракринной регуляции плаценты
- Секреция меняется в ответ на изменения ауто- и паракринного синтеза воспалительных цитокинов
- Вместе с PAI-1 и PAI-2 может играть роль в тромбофилических состояниях при беременности

Четверной тест как маркер прогноза нефропатии

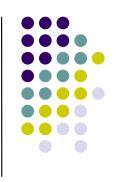


- Маркеры четверного теста беременности могут быть использованы как маркеры нефропатии
- Исследование 2004 г. показало, что для уверенного прогнозирования риска нефропатии необходимо использование всех 4-х маркеров (Conde-Agudelo et al., 2004)

ДЭА-С и эстрогены

- 90% эстриола после 20 недель беременности образуются из ДЭА-С плода
- Большой выход ДЭА-С из надпочечника плода связан с низкой активностью 3βгидроксистероид-дегидрогеназы
- Протективным механизмом, защищающим плод от избытка андрогенной активности является быстрая конъюгация стероидов с сульфатом
- В сутки плод вырабатывает более 200 мг ДЭА-С в день, в 10 раз больше матери

Надпочечники плода


- Дифференцировка к 7 неделям беременности
- Широкая фетальная зона и узкая дефинитивная зона
- К концу первого триместра размеры надпочечников больше размеров почек
- В течение последних недель беременности размеры увеличиваются в 4 раза
- После 20 недель беременности надпочечники нуждаются в стимуляции АКТГ

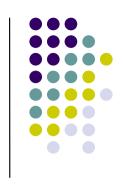
Надпочечники плода

- Фетальная зона
 - ДЭА-С
- Дефинитивная зона
 - Кортизол
 - Альдостерон

Надпочечники плода

- Кортизол плода регулируется отдельно от кортизола матери
- Плацента не пропускает к плоду материнский кортизол за счет высокой активности 11β-гидроксистероиддегидрогеназы (кортизол—кортизон)
- Активность 11β-гидроксистероид-дегидрогеназы стимулируют эстрогены плаценты
- Синтетические стероиды (метипред) легко проходят через плаценту и подавляют секрецию АКТГ у плода, снижая секрецию ДЭА-С и синтез эстрогенов
- Уровень свободного эстриола в крови матери остается сниженным в течение 2 недель после прекращения приема дексаметазона

Конъюгация Экскреция


Обратное всасывание конъюгатов

1

90% конъюгировано 10% свободный

ЖКТ матери

 Уровень зависит от синтеза предшественников у плода, трансформации в плаценте, метаболизма в организме матери

• Снижение

- Аномалии плода (анэнцефалия, трисомия 18)
- Наследственная недостаточность сульфатазы плаценты (сцепленное с полом рецессивное наследование)
- Хроническая гипоксия плода
- Прием глюкокортикоидов и антибиотиков

- Повышение
 - Острая гипоксия плода
 - Врожденная гиперплазия коры надпочесников
 - Почечная недостаточность у матери

Вывод

 При проведении тройного теста недооценка значимости клинической информации, в частности, приема лекарств и особенностей медицинской практики в регионе может приводить к грубым ошибкам скрининга

Спасибо за внимание!