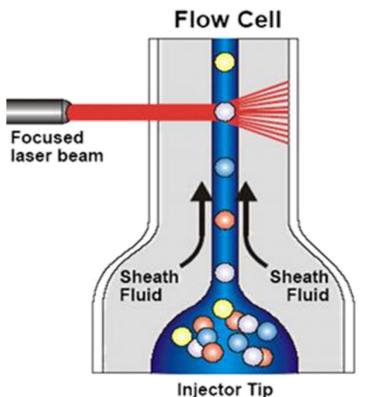
Современные параметры исследования крови и биологических жидкостей

Шубин С.Л. 02 сентября 2014

3-diff, 19 параметров

mindray

- RBC, HGB, HCT, MCV, MCH, MCHC, RDW-CV, RDW-SD,
- PLT, MPV, PDW, PCT
- WBC, Lymph #, Mid #, Gran #, Mid %, Gran %, Lymph %
- Гистограммы WBC , RBC , PLT
- Производительность: 60 образцов в час;
- Автоматическое разведение, лизирование, перемешивание, промывка и очистка от сгустков
- Память с гистограммами;
- Встроенный термопринтер, возможность подключения внешнего принтера, сканера штрих кодов; и т.д. и т.п.


Проточная цитометрия (FCM)

mindray

-Клетки вводятся в проточную ячейку, расположенную в оптическом пути источника света, обычно лазера;

-Через проточную ячейку проходит поток фокусирующей жидкости, который с большой скоростью проносит исследуемую жидкость мимо источника света;

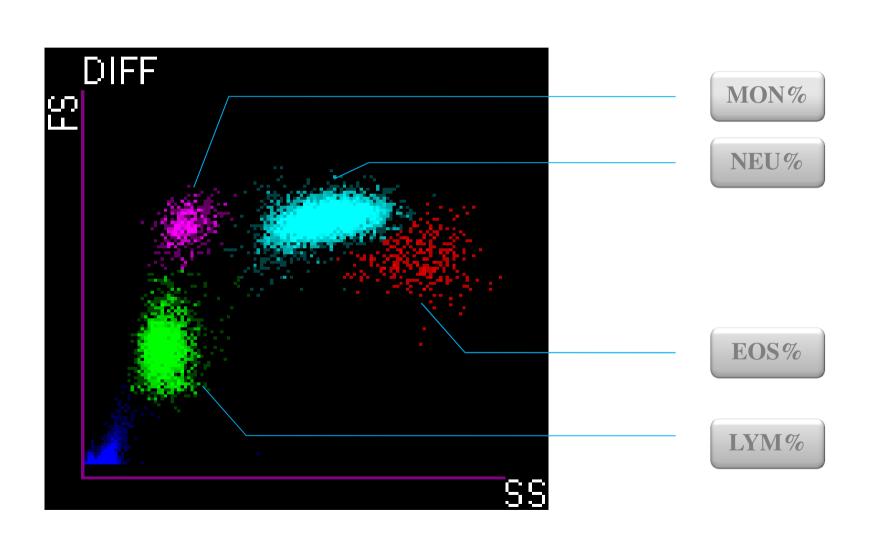
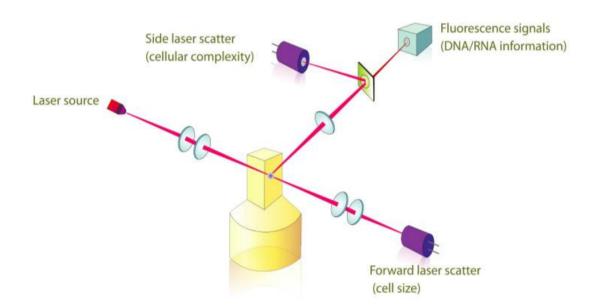
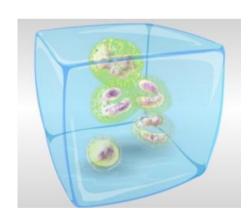

-Клетки занимают позицию в середине потока благодаря ламинарным характеристикам фокусирующей жидкости и проходят через луч лазера по одной

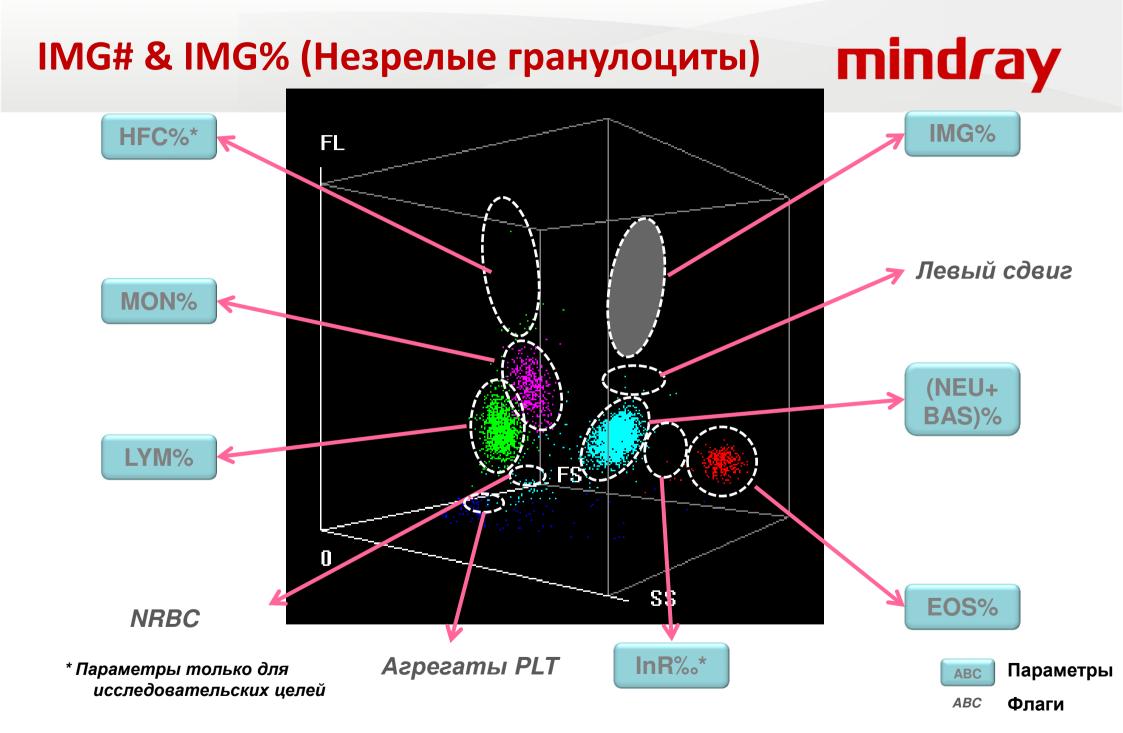
Диаграмма рассеивания DIFF

5-diff, 29 параметров

LIC#, LIC%, ALY#, ALY%


- Лазер + Химическое окрашивание + Проточная цитометрия
- WBC, Lym%, Mon%, Neu%, Bas%, Eos%, Lym#, Mon#, Neu#, Eos#, Bas#,
- RBC, HGB, HCT, MCV, MCH, MCHC,
- RDW-CV, RDW-SD, PLT, MPV, PDW, PCT, P-LCR, P-LCC


Принцип анализа

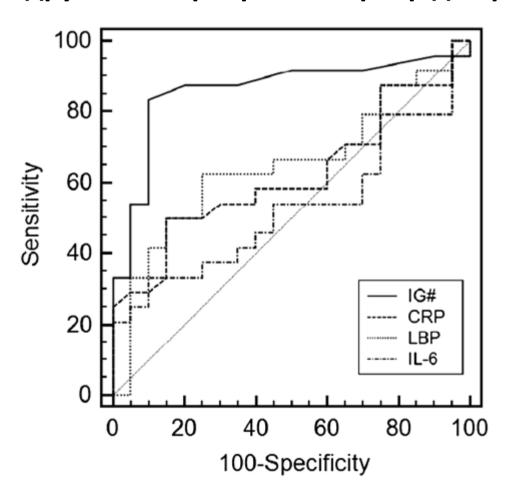


■ Технология SF Куб

S-Scatter (рассеивание на малых и больших углах)----размеры и комплексность клеток F- Флуоресценция----содержание ДНК/РНК Куб—трехмерный анализ клеток

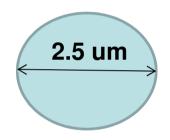
IMG# & IMG% (Незрелые гранулоциты)

■ Подсчет большого числа IMG: При ручном подсчете считаются малые количества IG, особенно в лейкопенических пробах или при наличии их в малых количествах. При стандартном подсчете до 100 клеток они могут быть вообще пропущены


■ Нет разницы в морфологической идентификации и зависимости от искусства морфолога

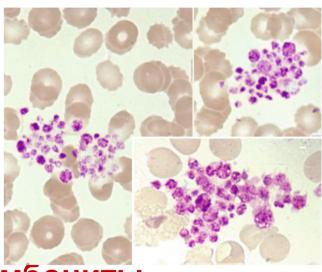
IMG# & IMG% (Незрелые гранулоциты)

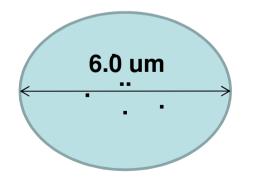
■ Подсчет незрелых гранулоцитов (IMG) полезный в сравнении с другими маркерами маркер для ранней диагностики сепсиса.



ROC (Receiver operating characteristic) кривые и площадь под кривой (AUC) вычислялись для сравнения способности различных клинических параметров по диагностики инфекций

CRP, C-реактивный белок; LBP, белок, связывающий липополисахариды; IL-6, интерлейкин-6.



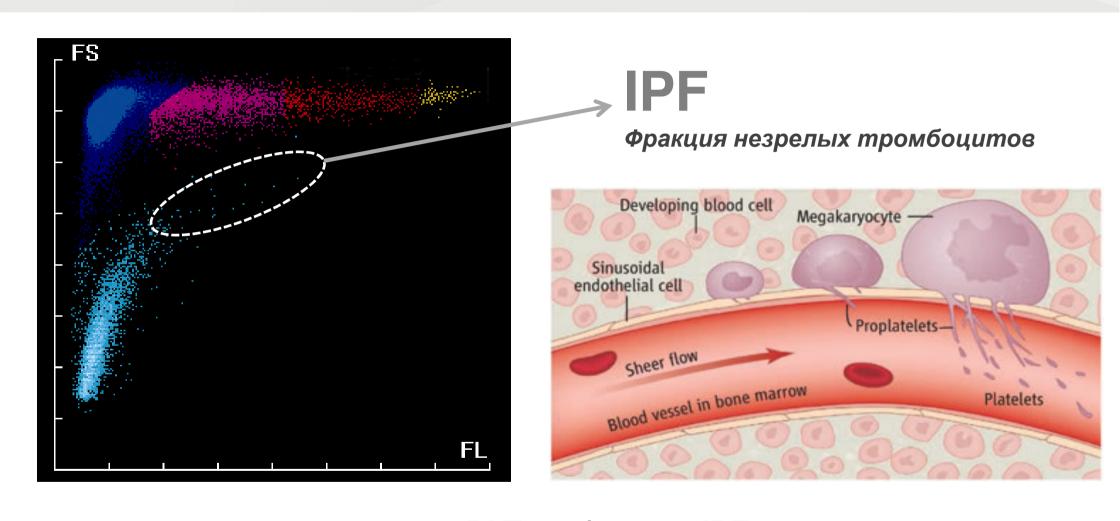

Незрелые тромбоциты/ретикулированные тромбоциты

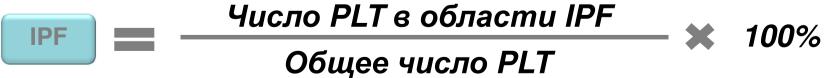
Зрелые тромбоциты

MPV достигает 8-10fl

Ретикулированные тромбоциты

MPV достигает 12-14fl


Незрелые тромбоциты/ретикулированные тромбоциты


■ Ретикулированные тромбоциты, также известные как тромбоциты стресса, появляются при компенсации тромбоцитопении.

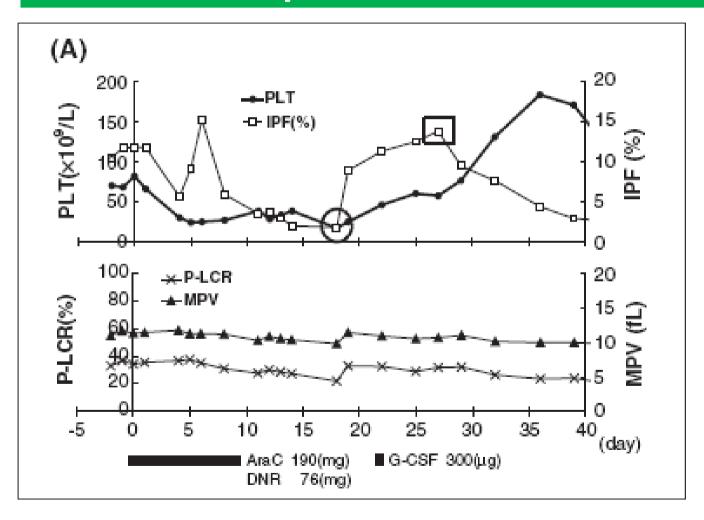
■ Ретикулированные тромбоциты содержат свободные рибосомы и фрагменты грубого эндоплазматического ретикулюма, аналогично ретикулоцитам, вызывая предположения, что они появляются из за

раннего и быстрого расширения и высвобождения предшественников.

Клиническое применение

- У пациентов с тромбцитопенией вызванной разрушением тромбоцитов, (автоиммунная тромбоцитопения и ДВС) наблюдаются очень высокие уровни HFPF%(IPF%)
- Повышенные значения HFPF%(IPF%) также наблюдаются у пациентов с восстанавливающимся костным мозгом вследствие химиотерапии или пересадки костного мозга, однако, эти уровни существенно ниже, чем при разрушении тромбоцитов.

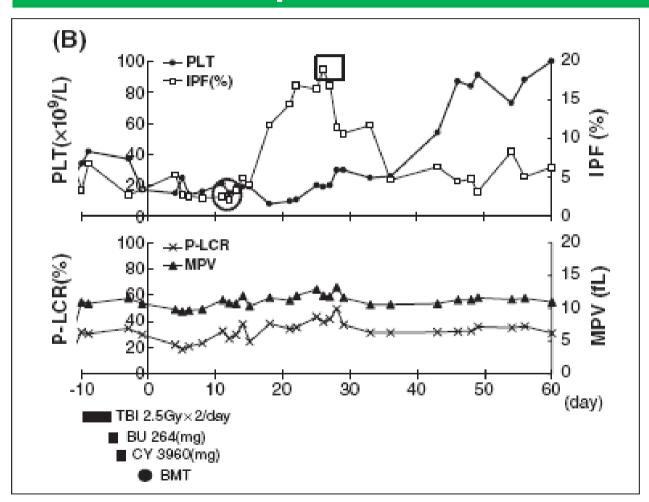
Источник: A Clinical Evaluation of High Fluorescent Platelet Fraction Percentage in Thrombocytopenia. *Thomas S. Kickler, MD, Sinichiro Oguni, and Michael J. Borowitz, MD, PhD.* Am J Clin Pathol 2006;125:282-287


Клиническое применение

- ФНП существенно повышена у пациентов с идиопатической тромбоцитопенической пурпурой и восстановительной фазой после химиотерапии
- ФНП существенно снижены в надире после химиотерапии,
- в норме у пациентов с полной ремиссией ITP и пациентов с апластической анемией (AA).

Источник: A simple technique to determine thrombopoiesis level using immature platelet fraction (IPF). Yasunori Abe a, Hideo Wada b,*. Thrombosis Research (2006) 118, 463—469

Клиническое применение



- Квадратом обозначена IPF перед восстановлением PLT.
- MPV и P-LCR не проявляют значительных изменений в сравнении с IPF

Рис. Химиотерапия АМL

Клиническое применение

- Квадратом обозначена IPF перед восстановлением PLT.
- MPV и P-LCR не проявляют значительных изменений в сравнении с IPF

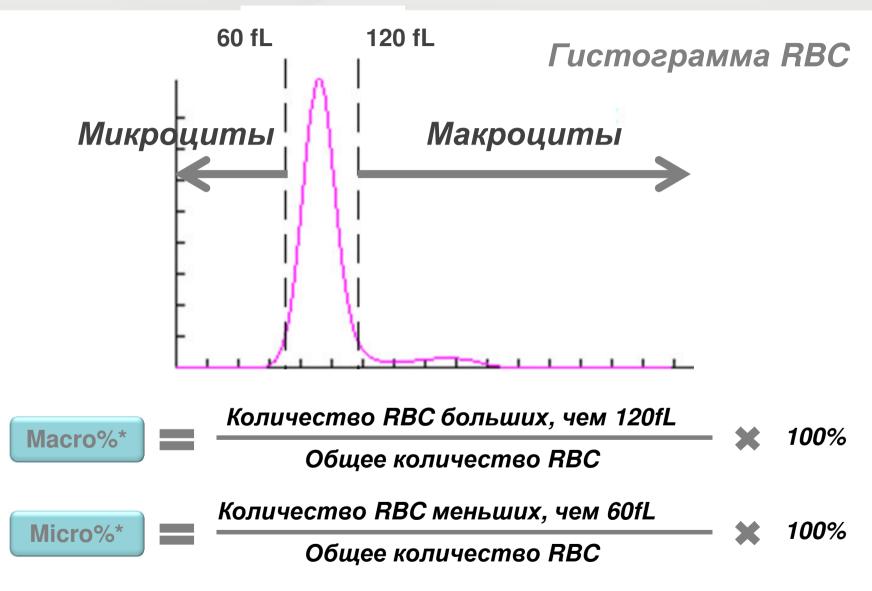
Рис. СМL при лечении облучением всего тела (ТВІ), химиотерапией и пересадкой костного мозга

Клиническое применение

- IPF может быть хорошим маркером тромбоцитопоэза в костном мозге после химиотерапии или пересадки костного мозга (ВМТ).
- Измерение IPF может быть полезным для определения необходимости и/или расчета времени для инъекций тромбоцитов пациентам с тромбоцитопенией после химиотерапии или ВМТ. Врач должен заказывать концентрат тромбоцитов до тех пор, пока IPF пациента повышен после химиотерапии

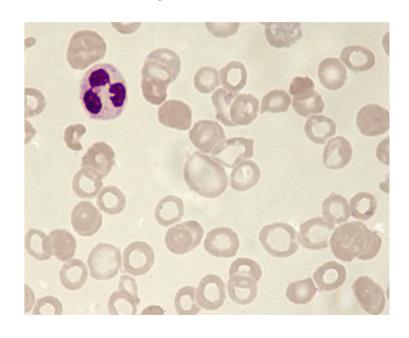
Источник: A simple technique to determine thrombopoiesis level using immature platelet fraction (IPF). Yasunori Abe a, Hideo Wada b,*. Thrombosis Research (2006) 118, 463—469

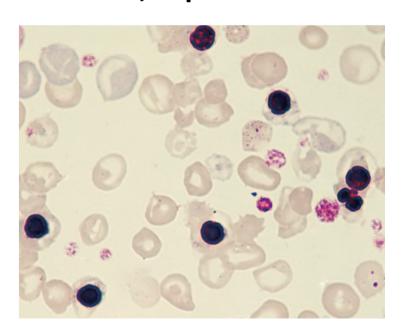
Микроциты и макроциты



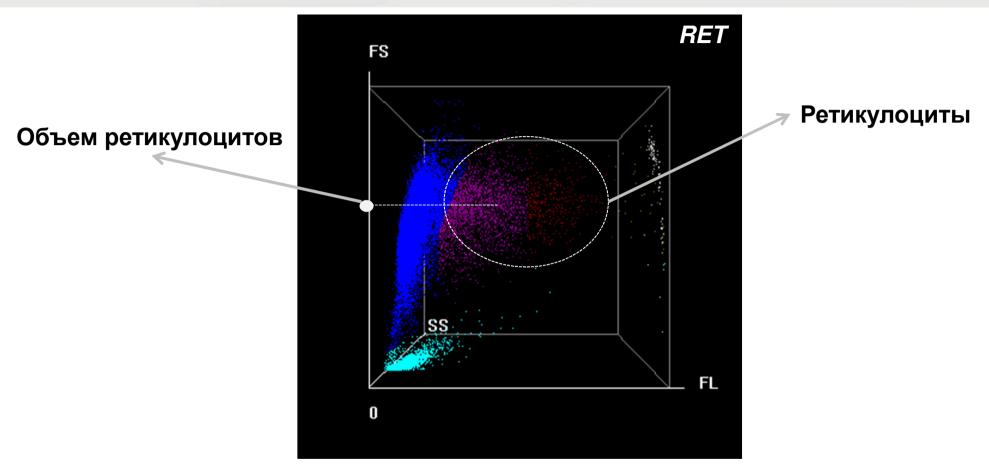
- Нормальные эритроциты имеют почти одинаковый объем и диаметр от 7 до 7.9 микрон.
- Микроциты, это клетки с диаметром менее 6 микрон
- Крупные RBC, или макроциты имеют диаметр более 9 микрон.

Микроциты и макроциты

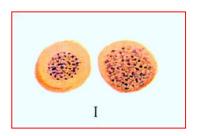


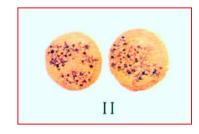

^{*} Исследовательский параметр

Микроциты и макроциты

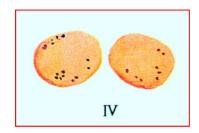


- Состояния, ассоциированные с макроцитами: острая анемия, мегалобластная анемия, болезни печени, гемолитическая анемия, миелома, макроцитоз новорожденных, миелопарезная анемия;
- Состояния, ассоциированные с микроцитами : железо дефицитная анемия, талассемия, отравление свинцом

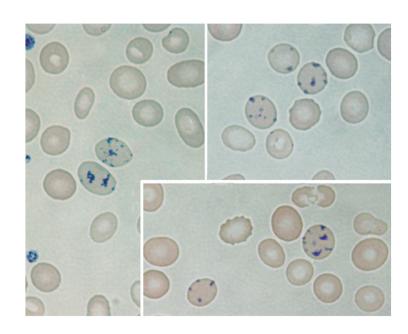

RHE* (Экспрессия гемоглобина ретикулоцитов) рассчитывается по объему ретикулоцитов.


MRV* (Средний объем ретикулоцитов) рассчитывается по объему ретикулоцитов.

* Исследовательские параметры



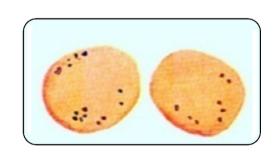
- Ret-He отражает 'кратковременное' состояние накопления гемоглобина в ретикулоцитах. Цинк протопорфирин (ZPP), напротив, отражает 'долгосрочную' величину, соотносимую с временем жизни эритроцитов (RBC)
- Повышенная IRF в сочетании с повышенным ZPP и пониженной Ret-He показательны для функционального железодефицита.

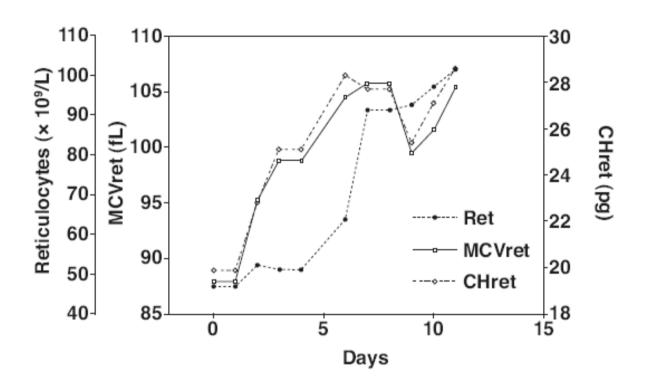


Источник: Changes in red blood cell hemoglobinization during pregnancy M. SCHOORL, D. van der GAAG, M. SCHOORL and P.C.M. BARTELS Ned Tijdschr Klin Chem Labgeneesk 2010; 35: 206-208

■ CHr(RHE) это полезный параметр, заслуживающий доверия в диагностике ЖДА (железо дефицитной анемии)

Источник: Clinical significance of reticulocyte hemoglobin content in the diagnosis of iron deficiency anemia. Karagülle M¹, Gündüz E¹, Sahin Mutlu F², Olga Akay M¹. Turk J Haematol. 2013 Jun;30(2):153-6.



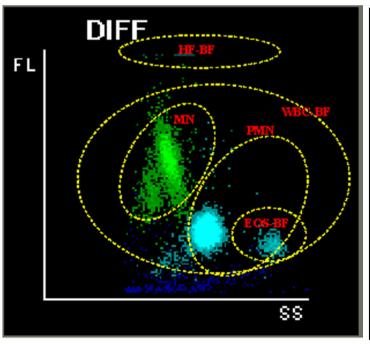

- MRV пациентов с железодефицитной анемией повышается после лечения препаратами железа
- MRV снижается с развитием железодефицитного эритропоэза
- После приема витамина В12 или фолата, MRV снижается и ретикулоциты становятся меньше зрелых эритроцитов
- MRV умноженный на число ретикулоцитов дает значение гематокрита ретикулоцитов, используемое для оценки возможного злоупотребления эритропоэтином в спорте.
- Резкое увеличение соотношения MRV/MCV один из ранних признаков ответа на трансплантацию костного мозга

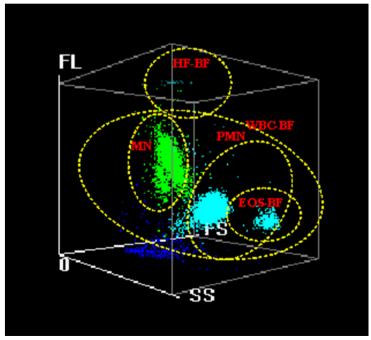
Источник:

Quality counts: new parameters in blood cell counting.C. BRIGGS. Int. Jnl. Lab. Hem. 2009, 31, 277–297

■Figure 2■ A case of iron deficiency treated with daily intravenous iron. Note the early and parallel response of the mean reticulocyte volume (MCVret) and mean reticulocyte hemoglobin content (CHret). Ret, reticulocyte count.

Источник:


Automated Blood Cell Counts State of the Art. Mauro Buttarello, MD, and Mario Plebani, MD. Am J Clin Pathol 2008;130:104-116


Принцип анализа

mindray

■ Канал Дифф

Канал Дифф дифференцирует субпопуляции (моноядерные клетки, полиморфоядерные клетки и эозинофилы) лейкоцитов в трехмерном пространстве по сигналам от обработанных лизирующим раствором клеток. Также, идентифицируются и флагируются клетки с высокой флуоресценцией, такие как гистиоциты, мезотелиальные клетки, лейкемические клетки, опухолевые клетки, и т.д. В канале дифф, также, ведется подсчет лейкоцитов и общее количество ядросодержащих клеток.

Экран результатов

Основные параметры

Параметр	Аббревиатура
Лейкоциты в биологических жидкостях	WBC-BF
Всего клеток в биологических жидкостях	TC-BF#
Количество мононуклеарных клеток	MN#
Процент мононуклеарных клеток	MN%
Количество полиморфоядерных клеток	PMN#
Процент полиморфоядерных клеток	PMN%
Эритроциты в биологических жидкостях	RBC-BF

Экран результатов

Исследовательские параметры (RUO)

Параметр	Аббревиатура
Количество эозинофилов в жидкостях тела	Eos-BF#
Процент эозинофилов в жидкостях тела	Eos-BF%
Количество клеток с высокой флуоресценцией в жидкостях тела	HF-BF#
Процент клеток с высокой флуоресценцией в жидкостях тела	HF-BF%
Подсчет эритроцитов в жидкостях тела	RBC-BF

Примечание: Исследовательский параметр RBC-BF обладает большей точностью и округляется до четвертого знака после запятой, тогда как параметр RBC-BF для клинического применения округляется до третьего знака.

NEU-BF#/ NEU-BF%

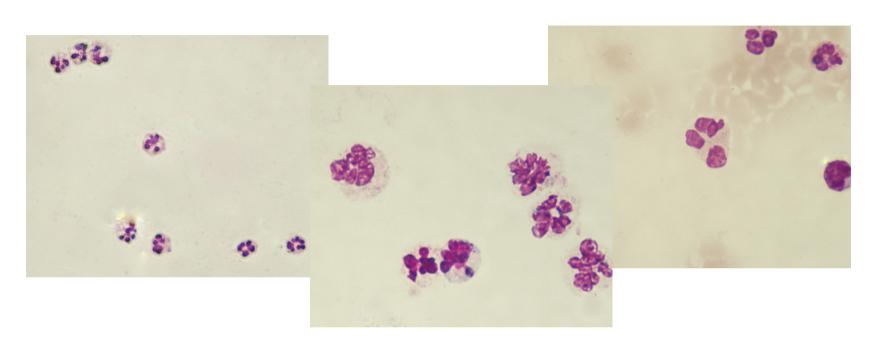


Рис. 2 Нейтрофилы в СМЖ пациента с бактериальным менингитом

При повышенных лейкоцитах и большом количестве нейтрофилов, необходимо провести тщательный поиск бактерий, поскольку на ранних стадиях бактериального менингита они присутствуют в очень малых количествах.

NEU-BF#/ NEU-BF%

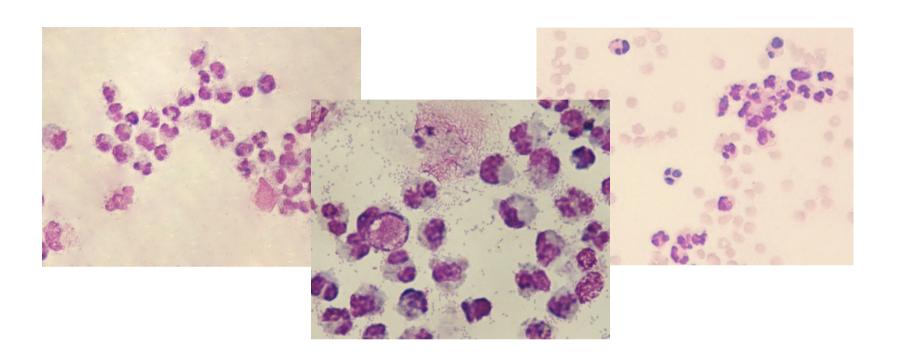


Рис. 2 Нейтрофилы в серозных жидкостях пациентов с пиотораксом

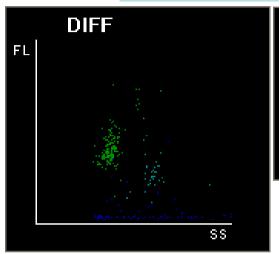
Ядра нейтрофилов более сегментированы, а филаменты длиннее, чем периферической крови. При наличии большого количества нейтрофилов, необходимо провести тщательный поиск бактерий.

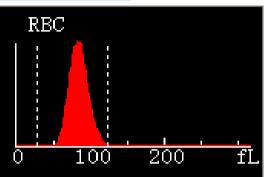
СМЖ-Субарахноидальное кровоизлияние

Результаты ВС-6800

Красные мутноватые образцы

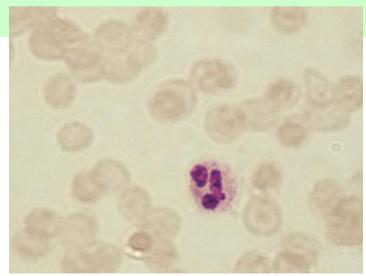
参数	结织	R.	报警	単位	参数	结果	报警	单位	WBC Message
ARC-RE	0.083			10^9/L	PMN#	0.014	7	10^9/L	
BC-BF	0.134			10^12/L	PMN%	17.3		%	
1N#	0.069			10^9/L	TC-BF#	0.083		10^9/L	
1N%	82.7			%					
参数		报警		结果	单位				ŀ
* Eos-BF#			0.00)	10^9/L				RBC Message
* Eos-BF%			0.5		%				
* HF-BF#			0.00)	10^9/L				
* HF-BF%			0.0		%				
* RBC-BF(R))		0.134	40	10^12/L				
									PLT Message


Обсуждение результатов


• Определяется большое количество эритроцитов, что соответствует внешнему виду пробы. Также, видны слегка повышенные лейкоциты.

СМЖ-Субарахноидальное кровоизлияние

Графики ВС-6800


FL FS SS

Обсуждение результатов

- Видна гистограмма RBC, что соответствует повышенным эритроцитам.
- •На скатерограмме DIFF видны клетки, что соответствует слегка повышенным лейкоцитам
- •При микроскопии видно большое количество RBC и небольшое количество

PMN

СМЖ-Субарахноидальное кровоизлияние

Клиническая картина

Пациент, 37-летний мужчина. Поднимая тяжести, внезапно испытал острую головную боль, побледнел и почувствовал тошноту. Затем потерял сознание. При госпитализации имел сонный вид. Была взята СМЖ на анализ. В пробе видна муть и кровь. Диагноз - острое субарахноидальное кровоизлияние вызванное разрывом врожденной аневризмы мозга.

Результаты микроскопического исследования

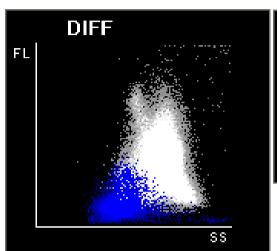
Параметр	результат	единицы
WBC	0.051	×10 ⁹ /L
RBC	0.135	×10 ¹² /L

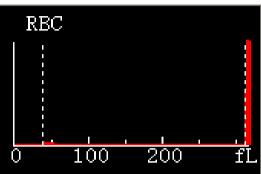
Плевральная-пиоторакс

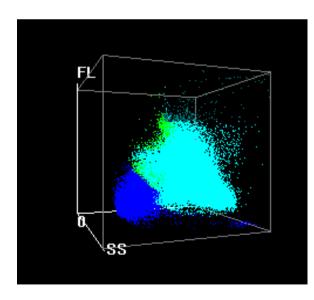
Результаты ВС-6800

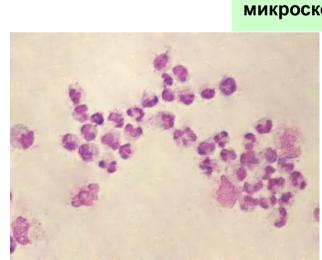
Гнойный образец

参数	结果	报警	单位		参数	结果	报警	单位	WBC Message	
WBC-BF	152.998	@	10^9/L		PMN#	***		10^9/L	白细胞散点图异常	
RBC-BF	0.023		10^12/L		PMN%	****		%		
MN#	****		10^9/L		TC-BF#	153.577	@	10^9/L		
MN%	****		%							
参数	报		结果		单位					
* Eos-BF#		****	ti	10^	9/L				RBC Message	1000
* Eos-BF%		****		%						*
* HF-BF#		****		10^	9/L					
* HF-BF%		****		%						
* RBC-BF(R	()	0.0	226	10^	12/L					4
									PLT Message	

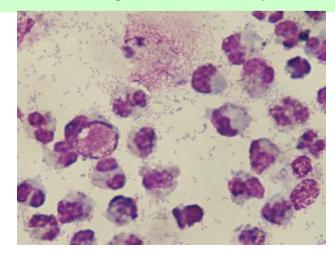

Обсуждение результатов


● Количество WBC явно очень высокое и превосходит предел линейности. Патологическая скатерограмма WBC. Результаты дифференцировки выданы как "****". Образец явно патологический.


Плевральная-пиоторакс


mindray

Графики ВС-6800



- Диаграмма diff явно патологическая, с высокими выбросами и без ясных границ между группами клеток. По диаграмме видно, что проба может содержать много WBC.
- Гистограмма RBC патологическая и высоко поднята справа признак того, что количество лейкоцитов велико.
- •При микроскопии видно высокое количество ядросодержащих клеток, в особенности полиморфоядерных. Бактерии также видны в микроскоп, что соответствует гнойной инфекции

Плевральная-пиоторакс

Клиническая картина

Пациент, 57-летний мужчина обратился в больницу с температурой, ознобом, кашлем и болью в груди. Была взята на анализ плевральная жидкость. Образец содержал гной, имел запах, характерный для бактериальной анаэробной инфекции. В итоге был диагностирован пиоторакс.

Результаты микроскопического исследования

item	result	unit
WBC	146.500	×10 ⁹ /L
RBC	0.024	×10 ¹² /L

WBC diff	(n=200)
PMN%	88.00%
Neu%	88.00%
MN%	12.00%
Lym%	2.00%
Mon%	10.00%
ПРИМЕЧАНИЕ	При микроскопии видны лейкоциты и бактерии. Клетки в состоянии лизиса

mindray

Thank you!