Современные лабораторные технологии (лабораторное обеспечение) в оценке плазменного гемостаза

Только автоматизация коагулологических исследований способна обеспечить действительную стандартизацию методов и воспроизводимость результатов.

Оборудование для лаборатории гемостаза

- * **Коагулометры** (в т.ч. с фотометрическим / нефелометрическим модулем) автоматы, полуавтоматы
- * Агрегометры (оптические / механические / импедансные)
- * Тромбоэластографы

- * общелабораторное (гематологический анализатор, ИФА-анализатор, ПЦР, цитофлюориметр, вискозиметр...)
- * ВСПОМОГАТЕЛЬНОЕ (термостаты, центрифуги...)

Агрегометры: методы и технологии

- 1. Микроскопия.
- 2. «Классический» метод Борна и его модификации («Биола»).
- 3. Оценка функции тромбоцитов с помощью тромбоэластометров.
 - 4. Система VerifyNow.
- 5. Использование кондуктометрического метода измерения

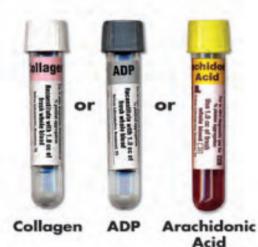
Технология: VerifyNow®

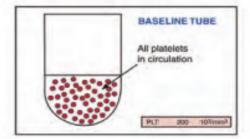
Система VerifyNow®, основанная на методе оптической трансмиссионной агрегометрии (LTA- Light **Transmittance Aggregometry),** определяет величину зависимости прохождения света в зависимости от агрегации тромбоцитов под действием препаратов (VASP Vasodilator-stimulated phosphoprotein).

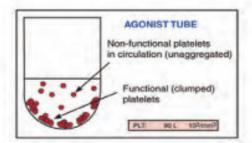
Кондуктометрический метод

- Авторское свидетельство СССР №899039 авторы А.С. Осьмак, В.В. Петраш и др.
- Система PL-11 и PL-10 фирмы SINNOWA

Система Ichor II на базе гематологического анализатора MINDREY BC-3600

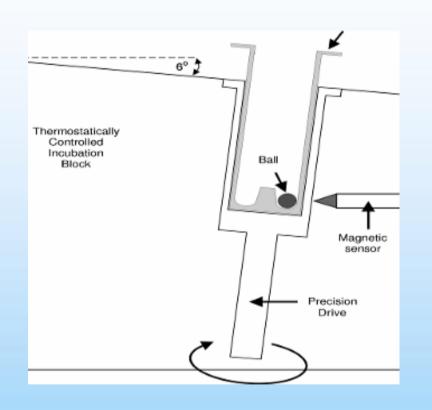



- Efficient pre-surgical screen
- Monitor anti-platelet therapies
- Determine best use of transfusion resources
- Testing on whole blood at the point of care
- Uses traditional ADP and collagen agonists run on a standard impedance cell counter



EDTA Baseline Tubes

Perform cell count on each tube


Коагулометры

Механический метод детекции сгустка

Более 8 методов определения изменения вязкости среды при помощи шарика

- •Вращение кюветы под углом от 6 до 15 градусов 2 варианта заклинивания геометрия и вязкость, сложно сделать автомат.
- •Остановка шарика в круглой кювете при вращении магнита снизу измерительной ячейки тоже 2 варианта геометрия и вязкость (НПЦ «Астра» Коатест1)
- •Остановка шарика в круглой кювете при вращении магнитного поля сбоку измерительной ячейки (Эмко АГП-02) (Trombolyzer)
- •Шарик в профильной кювете заклинивание за счет геометрии Stat-4, STA-Compact (качество изготовления кювет, как следствие одноразовость). Вязкость огромное количество «китайских» клонов. •И т. д.

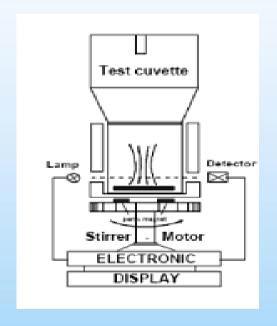
Наиболее часто встречающиеся приборы определяющие изменение вязкости среды при помощи шарика

•Вращение кюветы под углом от 6 до 15 градусов (требования установка прибора по горизонту) (пример Amelung КС-4),

STA compact

•Шарик в профильной кювете (рисунок выше) заклинивание за счет геометрии Stat-4, STA-Compact (качество изготовления кювет, как следствие точность измерения).

Метод измерения: вращение магнитного поля при помощи электромагнитов. Пример: линейка коагулометров ЭМКО 2 и 4 канальных


Плюсы

- •Гемолиз, липемия и иктеричность проб мало влияют на результат
- •Точность в случае соблюдения геометрии
- •Перемешивание пробы в процессе анализа
- •Пробы плазма, цельная кровь????

Минусы:

- •Шарик, в автоматах нет возможности «перезаряжать», очень дорогие кюветы, в полуавтоматах надо рассыпать.
- •Шарики, чтобы не ржавели, покрывают маслом, как масло влияет на анализ неизвестно. Некоторые производители хромируют шарики, что увеличивает их стоимость.
- Плохо измеряет низкие концентрации.

Оптико-механический метод детекции сгустка

Autoclot

Bce Clot и Helena Coadata2000, Autoclot

Плюсы

- •Гемолиз, липемия и иктеричность проб мало влияют на результат
- •Перемешивание пробы в процессе анализа

Минусы:

- •Рассыпать мешалки только вручную.
- •Чтобы не ржавели покрывают маслом, как масло на анализ неизвестно, редко хромируют.
- •Плохо низкие концентрации.

Оптический метод детекции сгустка

Разные способы: 1.Нефелометрия (Sysmex)

Sysmex 660 серии

2.Турбидиметрия:

1. Роторно-центрифужные (Elit Pro)

плюс – перемешивание, один датчик

минус -роторы не моются , высокая цена, в случае не полного использования положено выбрасывать

Elit Pro

2. В кювете или блоке кювет.

Кроме этого приборы различаются по измерительным длинам волн; 405 – Helena AC-4, 635 - Elit Top700.

Helena AC-4

Плюсы:

Не требуется дополнительный элемент (шарик или мешалка).

Простота анализа, высокая чувствительность.

Минусы:

Гемолиз, липемия и иктеричность проб могут влиять на результат.

Исследуется только плазма.

В результате анализа плюсов и минусов наиболее часто используемых автоматичеких коагулометров четыре года назад был разработан и внедрен в производство первый отечественный автоматический коагулометр АК-37

- Высокая производительность
- Лучшая цена в своем классе
- Работа с реагентами фирмы «Технология-Стандарт»
- Простота и удобство в эксплуатации
- Высокое качество клоттинговых исследований

- 4 измерительных канала.
- 37 проб пациентов.
- 9 позиций для реагентов, из них 4 термостатируемых и 2 с перемешиванием.
- Не менее 85 тестов в час протромбинового времени, не менее 45 – АПТВ.
- Печать результата сразу после выполнения анализа.
- Анализатор автоматически рассчитывает и выводит на печать концентрацию фибриногена, ПТИ по Квику, МНО, концентрацию факторов свертывания и т. д.

- Определение хромогенных тестов. Парус и Люпустесты.
- 2 сменных диска для реакционных кювет.
- Возможность ввода как по методам, так и по пациентам.
- «Пакетный» ввод.
- Возможность установки систем для взятия крови непосредственно в прибор.
- Удобный ввод номера пациента.
- Большой стартовый набор, позволяющий сразу начать работу.
- Инженерная и методологическая поддержка.
- Обратная связь с производителем.

Спасибо за внимание!